top of page

Journal Articles

22. Huang, C. -W. (黃琮偉); Wen, S.-C. (溫士儁); Hsiao, C.-H. (蕭傳勳); Zhang, C. -Z.; Lin, K. -C.; Yu, S.-S.,* Digital Light Processing of Soft Robotic Gripper with High Toughness and Self-Healing Capability Achieved by Deep Eutectic Solvents. Advanced Functional Materials, 2024.
https://doi.org/10.1002/adfm.202314101

21. Ren, Z. -F. (任之凡); Lin, K. -Y (林冠佑); Yu, S.-S.,* The Effect of Temperature and Shear on the Gelation of Cellulose Nanocrystals in Deep Eutectic Solvents. Biomacromolecules, 2024, 25 (1), 248-257. 
https://pubs.acs.org/doi/full/10.1021/acs.biomac.3c00959

21_TOC

20. Chuang, Y.-P.; Shen, C.-H.; Hsu, H.-J.; Su, Y.-Z.; Yang, S.-C.; Yu, S.-S.; Kung, C.-W. Cerium(IV)-Based Metal–Organic Framework Nanostructures Grown on 3D-Printed Free-Standing Membranes and Their Derivatives for Charge Storage. ACS Appl. Nano Mater. 2023, 6 (1), 19701-19709.
https://pubs.acs.org/doi/10.1021/acsanm.3c03508

19. Chen, J.-Y. (陳俊義); Lo, T.-H. (羅子軒); Feng, C. (馮喬); Lai, P.-C. (賴柏丞); Ruan, J.-L.; Wu, C.-T.; Yu, S.-S.* 3D Printing of Ceramics with Controllable Green-Body Configuration Assisted by the Polyvinyl Alcohol-Based Physical Gels. Advanced Engineering Materials, 2023, 25 (20), 2300445.
https://onlinelibrary.wiley.com/doi/full/10.1002/adem.202300445

18. Tsai, H.-Y. (蔡宏岳); Hsu, H.-J.(徐浩景); Yu, S.-S.* Shape Reprogramming of 3D Printed Ionogels by Solvent Exchange with Deep Eutectic Solvents. Polymer Journal 2023 55 (11), 1211-1223.
https://www.nature.com/articles/s41428-023-00814-4

17. Lai, P.-C. (賴柏丞); Ren, Z.-F. (任之凡); Yu, S.-S.,* Thermally Induced Gelation of Cellulose Nanocrystals in Deep Eutectic Solvents for 3D Printable and Self-healable Ionogels. ACS Applied Polymer Materials, 2022, 4 (12), 9221-9230.
https://pubs.acs.org/doi/10.1021/acsapm.2c01508

TOC.tif

Featured on the Cover of
ACS Applied Polymer Materials

16. Yu, C.-H.; Tseng, B.-Y.; Yang, Z.; Tung, C.-C.; Zhao, E.; Ren, Z.-F. (任之凡); Yu, S.-S.; Chen, P.-Y.; Chen, C.-S.; Buehler, M. J., Hierarchical Multiresolution Design of Bioinspired Structural Composites Using Progressive Reinforcement Learning. Advanced Theory and Simulations, 2022, 5 (11), 2200459.
https://onlinelibrary.wiley.com/doi/10.1002/adts.202200459

adts202200459-gra-0001-m.jpg

15. Pal, S.;  Su, Y.-Z(蘇酉澤).;  Chen, Y.-W.;  Yu, C.-H.;  Kung, C.-W.*; Yu, S.-S.*, 3D Printing of Metal–organic Framework-based Ionogels: Wearable Sensors with Colorimetric and Mechanical Responses. ACS Applied Materials & Interfaces 2022, 14 (24), 28247-28257.
https://pubs.acs.org/doi/10.1021/acsami.2c02690

TOC_ACSAMI20220213-01.tif

Featured on the Cover of
ACS Applied Materials & Interfaces.

aamick_v014i024-5.jpg

14. Pal, S.; Yu, S.-S.*; Kung, C.-W.,* Group 4 Metal-based Metal—Organic Frameworks for Chemical Sensors. Chemosensors 2021, 9 (11), 306.

13. Tsai, Y.-T. (蔡宜庭); Huang, C. -W. (黃琮偉); Yu, S.-S.*, The Effect of Temperature on the Kinetics of Enhanced Amide Bond Formation from Lactic Acid and Valine Driven by Deep Eutectic Solvents. Physical Chemistry Chemical Physics 2021, 23 (48), 27498-27507.
https://doi.org/10.1039/D1CP03243G

TOC-0102.tif

12. Lo, T.-H. (羅子軒); Yu, S.-S.*, 3D Printable and Sub-micrometer Porous Polymeric Monoliths with Shape Reconfiguration Ability by Miniemulsion Templating. Macromolecular Materials and Engineering 2021, 2100615.
https://onlinelibrary.wiley.com/doi/10.1002/mame.202100615

TOC-01.tif

11. Li, C.-Y. (李佳玗); Yu, S.-S.*, Efficient Visible-light-driven RAFT Polymerization mediated by Deep Eutectic Solvents under An Open-to-air Environment​. Macromolecules 2021, 54 (21), 9825-9836.
https://pubs.acs.org/doi/10.1021/acs.macromol.1c01367

TOC-01.tif

10. Feng, C (馮喬).; Yu, S.-S.*, 3D Printing of Thermal Insulating Polyimide/Cellulose Nanocrystal Composite Aerogels with Low Dimensional Shrinkage. Polymers 2021, 13 (21), 3614.
https://www.mdpi.com/2073-4360/13/21/3614#

TOC-01.tif

9. Lai, P.-C. (賴柏丞); Yu, S.-S.*, Cationic Cellulose Nanocrystals-based Nanocomposite Hydrogels: Achieving 3D Printable Capacitive Sensors with High Transparency and Mechanical Strength. Polymers 2021, 13 (5), 688.
https://www.mdpi.com/2073-4360/13/5/688

TOC.png

8. Chien, C.-Y. (簡禎佑); Yu, S.-S.*, Ester-mediated Peptide Formation Promoted by Deep Eutectic Solvents: A Facile Pathway to Proto-peptides. Chemical Communications 2020, 56 (80), 11949–11952.
https://doi.org/10.1039/D0CC03319G

TOC-01.tif

Featured on the  Back Cover of

Chemical Communications.

ChemComm BackCover_Page_2.tif

7. Lai, C.-W. (賴俊維); Yu, S.-S.*, 3D Printable Strain Sensors from Deep Eutectic Solvents and Cellulose Nanocrystals. ACS Applied Materials & Interfaces 2020, 12 (30), 34235-34244.
https://pubs.acs.org/doi/10.1021/acsami.0c11152

TOC-01.tif

Before joining NCKU

6. Yu, S.-S.; Solano, M. D.; Blanchard M. K.; Soper-Hopper, M. T.; Krishnamurthy, R.; Fernández, F. M.; Hud, N. V.; Schork, F. J.; Grover, M. A., Elongation of model prebiotic proto-peptides by continuous monomer feeding. Macromolecules 2017, 50 (23), 9286-9294.

5. Soper-Hopper, M. T.; Petrov, A. S.; Howard, J. N.; Yu, S.-S.; Forsythe, J. G.; Grover, M. A.; Fernández, F. M.,  Collision cross section predictions using 2-dimensional molecular descriptors. Chem. Comm. 2017, 53 (54), 7624-7627.

4. Forsythe, J. G.; Petrov, A. S.; Millar, W. C. Yu, S.-S.; Krishnamurthy, R.; Grover, M. A.; Hud, N. V.; Fernández, F. M., Surveying the sequence diversity of model prebiotic peptides by mass spectrometry. Proc. Natl. Acad. Sci. USA. 2017, 114 (37), E7656-E7659.;

3. Yu, S.-S.; Krishnamurthy, R.; Fernández, F. M.; Hud, N. V.; Schork, F. J.; Grover, M. A., Kinetics of prebiotic depsipeptide formation from the ester-amide exchange reaction. Phys. Chem. Chem. Phys. 2016, 18 (41), 28441-28450.

2. Forsythe, J. G. +; Yu, S.-S. +; Mamajanov, I.; Grover, M. A.; Krishnamurthy, R.; Fernández, F. M.; Hud, N. V., Ester-mediated amide bond formation driven by wet–dry cycles: A possible path to polypeptides on the prebiotic earth. Angew. Chem. Int. Ed. 2015, 54 (34), 9871-9875. (co-first authors)

1. Grover, M.; He, C.; Hsieh, M.-C.; Yu, S.-S., A chemical engineering perspective on the origins of life. Processes 2015, 3 (2), 309-338.

bottom of page